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ABSTRACT
Image-to-image registration is well-studied, but the challenge of

automatically validating registration results remains. In many appli-
cations, registration performance is still visually inspected. In Tissue
microarrays (TMAs), there are usually hundreds of tissues on a sin-
gle glass slide, making visual inspection almost impossible. In cases
where the TMA slide has to be removed from the microscope and
replaced (e.g., in sequential staining, temporal studies, and change
analysis), the images on the TMA need to be registered to the cor-
responding images in the previous steps. The registration has to be
robust since undetected registration failure will lead to inaccurate re-
sults in subsequent analysis. In this work, we present an automated
system to register images of corresponding tissue samples in a TMA,
detect registration failures accurately, and automatically re-initialize
registration in such cases. The system is image-independent, and
reduces the number of cases where the images need to be visually
validated. The system has been applied in a study of sequential flu-
orescent staining of tissue samples on a TMA slide, with 99.88%
registration accuracy.

Index Terms— Image registration, Failure detection, Failure re-
covery, Tissue microarray

1. INTRODUCTION

Recent advances in Tissue Microarray technology (TMA), in which
small tissue cores are arranged in a grid on a single glass slide, en-
able various high throughput gene expression and pathology studies.
Due to their numerous advantages, TMA technology (Figure 1(a))
is gradually becoming the standard for multi-patient pathology stud-
ies [1]. They allow for high throughput experiments to investigate
molecular profiles by immunohistochemistry, immunofluorescence,
fluorescent in situ hybridization (FISH), and in situ hybridization [2].
Image registration of tissue samples is a prerequisite in image anal-
ysis for TMAs in applications such as sequential staining, temporal
analysis, change analysis, expression level, and dose analysis.

A major bottleneck in automated registration systems is the val-
idation which includes the detection and correction of registration
failures. This is particularly important because an undetected reg-
istration failure will lead to erroneous results in later stages of the
automated analysis. The following methods have been used for val-
idating image registration [3, 4]:

i) Visual inspection of combined display of two or more im-
ages. This can be done by combining color channels, using
two displays with paired cursors, or by using a checkerboard
display.

ii) Analysis of image-to-image metric value. This is highly
image-dependent, and does not provide information about
re-initialization of registration.

(a) (b)

Fig. 1. (a) A typical TMA slide. (b) Tissue spot diagram of the TMA.
The circles represent the tissue spots, and the connecting lines depict
the zig-zag pattern of the microscope movement during imaging.

iii) Analysis of resulting transformation. This is useful if there
is a ground truth to compare with, e.g., when registering to a
synthetic image or an atlas.

iv) Analysis of transformation stability. This can be done by ex-
amining the Jacobian of the transform in the neighborhood of
the transform returned by the registration method. This ap-
proach does not preclude the selection of a local minimum,
and does not suggest re-initialization values.

In this work, we present an automated system to register images
of corresponding tissue samples in a TMA, detect cases of registra-
tion failures with great accuracy, and automatically re-initialize reg-
istration in such cases. The system is image-independent (for exam-
ple, in registering fluorescent and bright-field microscopic images) ,
and largely reduces the number of cases where the images need to
be visually validated. This system is highly valuable in application
areas where the TMA slide is moved during image acquisition, thus
requiring registration. The system has been employed in a study of
sequential fluorescent staining of tissue samples on a TMA slide,
with 99.88% registration accuracy.

2. SYSTEMS OVERVIEW

We present a fast, robust, and accurate system to register images of
multiple tissue spots, and automatically detect registration failures,
which can then be automatically re-registered using newly computed
initial parameters. The proposed system is independent of tissue
type or image modality. The only requirements are i) the tissue spots
must be located on the same slide, and ii) the coordinates of the
spots is known. The first condition is always true for tissue spots
on a TMA, while the coordinates can easily be obtained from the
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imaging microscope for the second condition. The proposed system
has seven steps:

1. Images in a small subset are registered initially using default
registration parameters in order to establish a ground truth
data for exploring the registration parameter space.(Section
4).

2. Registration of all other images with the optimal parameters.

3. Estimation of the global TMA transformation parameters to
estimate the misalignment of the TMA slide (Section 5).

4. The estimated global transformation parameters are used to
detect images where the registration failed as described in
Section 6.

5. All images where the registration failed are re-registered us-
ing new initialization values computed from both the global
transformation values and the coordinates of each image on
the TMA.

6. The re-registered images are assessed for registration failures
and cases of failures are identified for user intervention.

The TMA used for validation of the proposed system consists of
177 tissue locations or spots. Each spot has a small sample of breast
tissue sectioned at 5μm. The image acquisition protocol consists of
sequential rounds of staining with different dyes and bleaching. The
image of each TMA spot was automatically captured with a Zeiss
AxioImager microscope at 20X magnification, traversing the TMA
in a zig-zag pattern. Before any round of staining, an operator places
the TMA slide on the microscope, rigidly fixing the top left corner,
and calibrates the microscope by recording the relative coordinates
of each TMA spot on the microscope. After each round of staining,
the operator positions the TMA rigidly as before and makes manual
adjustments to obtain a view of the first spot that corresponds to the
view obtained in the first imaging round. The microscope then auto-
matically computes the new coordinates of the other spots, relative
to the first spot using the coordinates saved in the first round. Our
experiments included total of 1612 images from 13 rounds; a sample
set is shown in Figure 2.

3. IMAGE REGISTRATION

Registration corrects for global and local transformations. The
global transformation for each staining round is due to positioning
the TMA in a different location under the microscope after each
round of staining. Local transformation for each image is due to
the stage inaccuracy in the microscope system. The local trans-
formations are in general relatively small compared to the global
transformations. It is important to note that registration accuracy is
affected mainly by the registration metric, registration parameters,
and initialization. Metrics commonly used include mean-squared
difference, mutual information, and normalized correlation [5, 6].

The image-to-image transformation is modeled with rigid trans-
formation. Each image i was registered in two image resolution lev-
els to ensure robustness. Matte’s Mutual Information metric [7] and
a regular-step gradient descent optimizer were used in both levels.
In image registration terms, Mutual Information (MI) measures how
much information the intensity in one image tells about the intensity
in another. Commonly used in multi-modality registration problems
[8] due to its robustness, it is well suited for our application where
we occasionally have tissue loss and folding. MI is defined in terms
of entropy. Given two images A and B, the entropy in the images

(a) (b)

(c) (d)

(e) (f)

Fig. 2. The images in the first row (a,b) are registered with the
images in the second row (c,d). The third row represents both im-
ages after registration. The blue represent the reference image, while
red represents the transformed image. (e) successful registration, (f)
failed registration.

are computed as:

H(A) = −
∑

pA(a) log pA(a), (1)

where pA(a) denotes the probability that a random pixel in imageA
has a value a. The joint entropy of the images is represented as

H(A, B) = −
∑
A

∑
B

pAB(a, b) log pAB(a, b). (2)

The Mutual Information, MI(A, B), between the two images is
computed as

MI(A, B) = H(A) + H(B)−H(A, B). (3)

In MI cost function is optimized using the Mattes et al. [4]
method where the user-defined registration parameters include the
number of samples and number of bins used to compute the density
estimates; the scale parameter that relates rotation to translation; and
the optimizer step length.

4. GROUND TRUTH AND TUNING PARAMETERS

We established the ground truth registration only for a subset of one
dataset to analyze the sensitivity to parameters and test the perfor-
mance by running Design of Experiments (DOE). After fixing the
parameters we test the performance of the algorithms for the new
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Fig. 3. Distance between the Tr and Tg for 124 images. The distance
is measured as a warping differential,W . The dashed line (threshold
= 10 pixels) separates correct and failed registrations.

datasets by checking the registration failures visually using two-
color overlaid images (Figure 2e-f). For the cases where the registra-
tion failed, the initialization was manually adjusted and the param-
eters for the MI metric were manually tuned until the images were
correctly registered. The performance of a set of registration param-
eters is assessed by comparing the resulting transformation param-
eters with the ground truth transformation values. This comparison
is performed by computing the average Euclidean distance between
a set of uniformly sampled grid points warped with the ground truth
values and the same points warped with the newly computed trans-
formation values.

LetP = {P(1), P(2), . . . , P(n)} be a set of n uniformly sampled
points in image coordinates. Let Pg = {Pg(1), Pg(2), . . . , Pg(n)} be
the same set of points after transforming with ground truth trans-
formation Tg , and let Pr = {Pr(1), Pr(2), . . . , Pr(n)} represent the
points when transformed with another transformation Tr . The warp-
ing differential between the two transformations is computed as

W(g,r) =
1

n

n∑
i=1

√
(Pg(i) − Pr(i))2. (4)

A threshold is set such that a value of W greater than the threshold
indicates a large difference between the two transformations, which
in turn implies that the registration represented by the transforma-
tion values Tr is a failure with respect to the ground truth. In our ex-
periments, correct registrations usually have W very close to zero,
and a threshold of 10 captures all failed registrations. Figure 3 il-
lustrates the values of W for images in the last staining/bleaching
round. The transformations can similarly be compared using dis-
tances in the Riemannian space of 2D rigid transforms [9].

After manually establishing the ground truth transformation pa-
rameters as discussed in Section 4, we proceeded to find the set of
registration parameters that will be optimal for registering all the
images. We evaluated different combination of registration parame-
ter values using a full factorial Design of Experiments (DOE). The
transformation parameters obtained with each registration was com-
pared with the ground truth parameters by comparing the warping of
a regular grid as described in Section 4.

5. REGISTRATION FAILURE DETECTION

Our novel registration failure detection algorithm is based on the fact
that all the images are affected by the same global transformation
since they are collocated on the same TMA slide. The microscopy
stage is calibrated with the images, so that we can easily switch be-
tween pixel units in the image coordinate system to metric units in
the stage coordinate system.

Registration was performed on individual images in local image
coordinate space to obtain parameters of a rigid transformation: the
rotation angle θ about the origin (top left corner of image) and two

translations in the x and y directions (t = [tx, ty]T ). Let the coor-
dinates of a point in an image be xi = [xi, yi]

T and the coordinates
of the same point after registration to the reference (fixed) image be
x′i = [x′

i, y
′

i]
T . The registered coordinates x′i is related to the origi-

nal coordinates xi as follows:

x′i = rixi + ti, (5)

where r =

(
cos θ − sin θ
sin θ cos θ

)
is the rotation matrix. xi and

x′i are measured in pixels in the local image coordinate system, with
the top right corner of the image as origin.

Each transformation is dominated by a global transform intro-
duced during the placement of the TMA at each staining/bleaching
round. This implies that there is a global rotation angle Θ and a
global translation T = [Tx, Ty]T that is common to all the spots
on the TMA. Let a point in an image in the TMA coordinate sys-
tem be Xi = [Xi, Yi]

T and the same point after registration be
X′

i = [X ′

i, Y
′

i ]T . Xi andX′

i are measured in μm in the TMA coordi-
nate system, with the origin at the top right corner of the first image.
If Di is the TMA coordinates of the top left corner of the image of
tissue sample i on the TMA slide as recorded by the microscope, and
p is the pixel size in μm, then the TMA coordinates is related to the
local image coordinates by the relations

Xi = pxi + Di and X′

i = px′i + Di. (6)

Note that the coordinates of the first TMA spot which the oper-
ator uses to visually align the TMA slide (i.e., the center of TMA
rotation) is taken as the origin. The relationship between the original
and transformed TMA coordinates is expressed as

X′

i = RXi + T+ ξi, (7)

whereR =

(
cosΘ − sin Θ
sin Θ cos Θ

)
is the global rotation matrix and

ξi is the residual error associated with local transformations from the
stage not accounted for by the global transform;

ξi = X′

i −R
′Xi − T. (8)

For all theN images on the TMA, our task is to estimateR and
T such that ξi is minimized. We proceed by computing the mean
X̄ and X̄′ for X and X′ respectively, and compute the correlation
matrix. A singular value decomposition (SVD) of the correlation
matrix gives a diagonal matrixD and two unitary matricesV andU

such that K = VDUT . The rotation matrixR is estimated from the
SVD as:

R̂ = V
(

1 0
0 det(VUT )

)
UT

, (9)

and the translation estimated as

T̂ =
1

N

∑
i=1

N
(
X′

i −RXi

)
(10)

A detailed proof can be found in [10]. The robustness of the algo-
rithm was further improved by using Least Median of Squares [11]
estimation method to randomly select a subset of the data to be used
for the estimation of the global parameters. This makes the algo-
rithm to be practical even with (theoretically) up to 50% registration
failures.
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Fig. 4. Failure detection and ROC curves for two image sets. The
blue plots show the residual error of each registration. The median
residual error is shown by the straight black line in the bottom. The
red crosses are actual registration failures determined by the ground
truth comparisons, and the black circles are the registration failures
detected by the algorithm using a threshold of 5μm. Inset is the ROC
curve obtained by varying the threshold value from 0 to 20μm.

6. RESULTS

The residual error of registration for each image in the TMA is cal-
culated using Equation 8 by substituting the estimated values of R
and T. In our implementation, rather than use a single point to com-
pute residual error, we sampled several points on a grid on the image,
taking the average residual error to be the residual error of the im-
age. The median of the residuals for all images in the TMA was
then computed. Based on the assumption that most of the images
are correctly registered, a failed registration is defined as one where
the residual exceeds the median residual value by more than a user-
defined threshold value.

To validate the registration failure recovery, we registered the
images in our data set using sub-optimal registration parameters that
gives about 15% registration failures. The plots of the residual er-
rors for various staining/bleaching rounds are depicted in Figures 4.
Varying the threshold values from 0 to 20μm, the receiver operating
characteristics (ROC) curves [12] are inset in each plot. The figures
show the performance of the proposed algorithms using a threshold
value of 5μm. Out of 1,612 images evaluated as described, there
was 1 false positive and 3 false negatives. This implies a sensitivity
of 96.6% and a specificity of 99.9%.

To validate and test the overall system, we again used sub-
optimal registration parameters. The registration failure detection
algorithm found 85 images to be mis-registered. The initial values
for each image was individually computed as shown above, using
their coordinates in the TMA. Out of the 85 images, 73 were cor-
rectly re-registered in this process, thus leaving only 12 images for
manual initialization. This implies that 1,600 images in all were
automatically registered using sub-optimal registration parameters;
an accuracy of 99.56%.

7. DISCUSSION AND CONCLUSION

In this work, we presented a hierarchical approach to register images
of tissue spots on a TMA, and validation results using a sequentially
multiplexed protein expression study with 1,612 images. The av-
erage execution time is 25 seconds on a standard PC. The optimal
registration parameters are learnd using a DOE with small number
of samples. This sect of parameters are then applied to all images,
resulting in an overall success rate of 99.56%. We also presented a
novel algorithm for detecting image registration failures in the TMA.

The failed cases are re-initialized for a new round of registration.
The method is image-independent, and relies completely on loca-
tions of the corresponding images on the TMA to determine when a
registration fails. The approach achieves a sensitivity of 96.6% and
a specificity of 99.9% for the 1,612 images tested. Given a set of
transformation parameters after image registration, it takes about 10
seconds to identify the failures in all the images. We also demon-
strated the use of the global parameters obtained to re-initialize the
registration, thus boosting registration performance to 99.56%, even
with sub-optimal registration parameters.
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